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ML Literature (DNN) Neuromorphic (SNN) 

Song, PLoS Biol. 2005 Courtesy: Nuance 

● Dense connectivity 

● Learning done offline 

● Back-propagation  

(requires labeled data) 

● MNIST 99.79%, ImageNet 95%  

● What about unlabeled data  

or customization? 

● Full computation on each layer  

→ high power 

 

 

● Sparse connectivity 

● Online learning 

● STDP, SRDP, Reward 

(biological evidence) 

● MNIST 99.08%, ImageNet N/A 

● Cont. learning & detection 

● Adaptable for input change 

● Sparse spiking, attention  

→ low power 
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Neuromorphic Core with On-Chip STDP 

● Under STDP learning, when neuron K spikes, all 

synapses on row K and column K may update 

● Transposable SRAM: single-cycle read & write in 

both row and col. directions  

● Efficient pre- and post-synaptic update 

● Near threshold operation 

● Pattern recognition 

20X

fully functional

retention mode

Seo, CICC, 2011 
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Versatile Learning in Neuromorphic Core 

● A versatile neurosynaptic core to support various learning rules,  

large fan-in/-out, sparse connectivity 

● Triplet STDP (Pfister, J. of Neuroscience, 2006, Gjorgjieva, PNAS 2011) 

● post-pre-post: post nrn. spike & pre nrn. timing & post nrn. timing 

● pre-post-pre: pre nrn. spike & post nrn. timing & pre nrn. Timing 

Various STDP Learning Rules  

(Feldman, Neuron 2012) 

Multi-factor Triplet-STDP 
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[1] Diehl, Front. of Neuroscience, 2015 

● Joint feed-forward excitation and inhibition 

● For a small number of inhibitory neurons,  

add pre=>inh, inh=>post synapses 

● Balance excitatory & inhibitory synaptic inputs 

Vogels, Science, 2011 
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Neural Spike Sorting Processor  

(for deep brain sensing & stimulation) 

● Signals from invasive electrodes: spikes from multiple neurons 

● Online, unsupervised neuromorphic spike-sorting processor 

Collaboration with Columbia University (ISLPED 2015) 
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● Weight update through STDP 

● Start with K=2, automatically 

increases # of output neurons if 

the spike difference is large 

enough (self-organized map) 
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Exp. Results: Clustering Accuracy 
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 Proposed. Avg acc.= 91%

 Osort based. Avg acc.=69%

Receptive field of 
dataset that contains  
4 clusters in 3000 spikes 

Spike sorting accuracy more 

reliable than other low-complexity 

algorithms such as O-sort  

Avg. accuracy: 91% vs. 69% 
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• 65nm GP, high-Vth, 0.5x0.5mm2 

• 9.3µW/ch at 0.3V 

•Layout of the design is 
dominated by memory 
elements, as well as power.  
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Neuromorphic Computing w/ NVMs 

● Emerging NVMs (e.g. 

RRAM) could alleviate 

power/area bottleneck 

of conv. memories 

● Read rows in parallel: 

weighted sum current 

● Peripheral CMOS read: 

current-to-digital converter 

 

130nm  

RRAM array +  

CMOS read circuits 

(under testing) 
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Simulation results for 4ns read timing window 
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Summary 

● Neuromorphic computing hardware 

● 45nm testchip with on-chip STDP learning 

● Versatile learning neuromorphic core & architecture 

● 65nm spike clustering processor 

● Emerging NVM arrays + peripheral read/write circuits 

 

● Future research with circuit-device-architecture co-

design and optimization 



10 

Collaborators 

● ASU 

● Faculty: Yu Cao, Shimeng Yu, Chaitali Chakrabarti, Sarma 

Vrudhula, Visar Berisha 

● Students: Minkyu Kim, Deepak Kadetotad, Shihui Yin, 

Abinash Mohanty, Yufei Ma 

● Intel: Gregory Chen, Ram Krishnamurthy 

● Columbia University: Mingoo Seok, Qi Wang 


